
Complementary to Standardized Mean Difference, which 
evaluates bias correction by features, our metric measures 
how well these methods retrieve the unbiased, cutting 
effect estimation errors by up to 50%.
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Problem. Bias correction methods considered valid by today’s standards 
can yield significantly different results depending on the method used.

Contribution. We propose a new metric that generates numerous artificial 
bias correction tasks from one of the populations. We claim that the ability 
of bias correction methods to retrieve the true effect in these artificial 
tasks correlates with their ability to do so in the real task.

Corollary contribution. Because our metric requires running hundreds of 
bias corrections, we automate the entire process, including validation, to 
replace manual steps.

Results. In simulations, methods that perform best on artificial tasks 
exhibit a lower average estimation error of the true effect. On real tasks 
from public datasets, we demonstrate a reduction of up to 90% in the 
variability of estimated corrected effects.

FIGURES AT A GLANCE: ASK ME FOR MORE DETAILS
The typical propensity score matching pipeline involves two key 
decisions: selecting the propensity model and choosing the 
matching technique.

There are many different propensity estimation models available. 
In some cases, only one model is considered valid, while in 
others, multiple models may be applicable. Here, we present six 
models, though many more exist. The scores reflect an 
overlapping metric between population propensities, with a 
propensity estimation considered valid if it exceeds 50%.

We now show SMD and A2A values for various tasks and propensity 
models. We observe that the results of a given matching method 
can vary significantly depending on the propensity estimation used. 
Generally, A2A and SMD are complementary: when one is low, the 
other tends to be high.

This figure illustrates the range of estimated corrected effects 
among valid methods, showing the difference between the 
maximum and minimum values for valid models. Large ranges 
typically correspond to a high mean average error. By reducing the 
number of valid models using A2A, we achieve smaller ranges and 
lower errors, indicating that the selected models are more 
accurate. The optimal strategy for combining the two metrics 
depends on the number of confounders: when there are many 
confounders, SMD is more relevant, and methods that prioritize it 
perform better. Conversely, when there are few confounders, 
methods that emphasize A2A are more effective.

A2A is computed using an algorithm that generates artificial 
matching problems similar to the problem being addressed. This 
involves selecting two subpopulations from the control group that 
exhibit the same differences as those between the control and 
treated groups, but halved to avoid creating overly challenging 
problems with numerous invalid corrections. Since there is no 
actual difference between the two subpopulations drawn from the 
same control population, we can evaluate how effectively methods 
can debias this problem. Creating the artificial problem boils down 
to minimizing the following loss:

Remaining work. We still need a way to determine the best 
method among SMDxA2A and Pareto on the problems at hand (ie 
low or high number of confounders). Additionally, A2A currently 
requires computing all possible matchings, which can be 
prohibitive in some cases. We need to find a way to translate A2A 
into a more absolute metric, similar to SMD.
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